

Department of Plant Pathology

ALMA BLUEBERRY UPDATE MEETING

Georgia Blueberry Disease Update

Jonathan E. Oliver Fruit Pathologist and Extension Specialist Plant Pathology Department University of Georgia

January 13th, 2021

Outline

- 2020 Disease Diagnostic Summary
- Specific Blueberry Issues During 2020
 - Yeast Rot Problems on Rabbiteye
 - First Identification of Bacterial Wilt of Blueberry in Georgia
 - Phytotoxicity on Blueberry Fruit Spray Injuries
- Management Updates
 - Ripe Rot of Blueberry (Fungicide Resistant Anthracnose)
 - Mummy Berry
- Seasonal Spray Schedule

Outline

- 2020 Disease Diagnostic Summary
- Specific Blueberry Issues During 2020
 - Yeast Rot Problems on Rabbiteye
 - First Identification of Bacterial Wilt of Blueberry in Georgia
 - Phytotoxicity on Blueberry Fruit Spray Injuries
- Management Updates
 - Ripe Rot of Blueberry (Fungicide Resistant Anthracnose)
 - Mummy Berry
- Seasonal Spray Schedule

2020 DISEASE DIAGNOSTIC SUMMARY

Disease Diagnoses on Blueberry Samples by UGA Plant Disease Clinic: [samples submitted in 2020]

Disease Diagnoses on Blueberry Samples by UGA Plant Disease Clinic: [samples submitted in 2020]

Root Disease Issues:

Phytophthora cinnamomi: 40 Rhizoctonia: 26 Root problem (unknown cause): 7

Bacterial and Viral Diseases:

Bacterial Wilt (Ralstonia): 2 Bacterial Leaf Scorch (*Xylella*): 1 Blueberry red ringspot virus: 1

Phytophthora continues to be our most frequently diagnosed disease issue

Disease Diagnoses on Blueberry Samples by UGA Plant Disease Clinic: [samples submitted in 2020]

Stem, Leaf, and Fruit Fungal Diseases:

Pucciniastrum sp. (Rust): 4 Botryosphaeria Stem Blight: 4 Fusicoccum sp.: 4 Pestalotia sp. (Fruit Rot): 3 Phyllosticta sp. (Leaf Spot): 2 Colletotrichum sp. (Anthracnose): 1

Misc. Issues: Insect or mite damage: 3 Sooty mold: 2 Unknown: 2 Environmental stresses: 1

Spring rust epidemics continue to be an issue following warm winters

Outline

- 2020 Disease Diagnostic Summary
- Specific Blueberry Issues During 2020
 - Yeast Rot Problems on Rabbiteye
 - First Identification of Bacterial Wilt of Blueberry in Georgia
 - Phytotoxicity on Blueberry Fruit Spray Injuries
- Management Updates
 - Ripe Rot of Blueberry (Fungicide Resistant Anthracnose)
 - Mummy Berry
- Seasonal Spray Schedule

YEAST ROT

Yeast Rot Problems on Rabbiteyes

- In late May 2020, several growers and packing houses in Georgia began reporting severe problems with fruit quality.
- Soft, splitting fruit were common, and diagnostic samples were noted to be heavily infested with yeasts.
- As a result of these issues, packing houses in Georgia were forced to reject numerous loads of harvested fruit, many blueberry packing lines shut down early, and many harvests were abandoned completely.
- Economic losses were significant.

Fruit splits on 'rabbiteye' blueberry

YEAST ROT

Yeast Rot Problems on Rabbiteyes

- Yeast rot is a typically sporadic post-harvest rot of blueberries caused by the fungus *Aureobasidium pullulans*.
- This fungus is considered a secondary or weak pathogen that colonizes fruit surfaces & wounds, causing fruit to rapidly collapse and take on a wet, slimy appearance.
- Warm, wet and/or humid conditions likely favor the growth of this fungus.

Progression of Yeast Rot on Blueberry Fruit

• With how sudden & widespread this issue was in GA in 2020, it's likely that environmental conditions were key.

YEAST ROT

Yeast Rot Problems on Rabbiteyes

Rapid shift to warmer overnight temps in mid/late May

Yeast Rot Problems on Rabbiteyes

- Yeast rot issues are typically sporadic and infrequent.
- As a result, no management options are available for yeast rot, beyond timely harvesting & handling of ripe fruit.
- The exact causes of the observed issues with the rabbiteye harvest in 2020 are unclear, but environmental conditions likely factored heavily.
- Fruit splits (resulting from an extreme rainfall event in late May) and rapidly warming nighttime temperatures (after a prolonged period of cool temps during berry development) likely provided ideal conditions for yeast growth on berries.

First ID of Bacterial Wilt in Georgia

- Bacterial wilt, caused by *Ralstonia* solanacearum (Rs) was first identified on 3 Florida farms in 2016.
- Since 2016, it has since been found in multiple locations through Florida.

Marginal leaf scorch, an initial symptoms of bacterial wilt disease

- Over the last three years, samples from 18 sites in eight counties in southern Georgia have been tested for Rs.
- In 2020, bacterial wilt was identified for the first time on blueberries in Georgia at two sites in Clinch County.

First ID of Bacterial Wilt in Georgia

'Indigocrisp' Blueberry Planting in Clinch County, Georgia

First ID of Bacterial Wilt in Georgia

 Symptoms include marginal leaf necrosis, wilting, & plant death in as little as 3 weeks after infection
 Highly susceptible cultivars: 'Arcadia', 'Indigocrisp', & 'Keekrisp'
 Moderately susceptible cultivars: 'Emerald', 'Farthing', & 'Meadowlark'

Leaves showing marginal leaf scorch Affected plants showing wilting and plant decline
Symptoms can resemble Bacterial Leaf Scorch or Phytophthora Root Rot

First ID of Bacterial Wilt in Georgia

- *R. solanacearum* is easily spread through water, soil, or infected plant material; often spreads down rows.
- Management largely relies on prevention (limiting the movement of plants, equipment and soil between farms) & burning infected plant materials.
- Efficacy data is scare for bacterial wilt chemical controls. Routine soil drenches with phosphonate fungicides (K-Phite) *may* have some efficacy to protect nearby plants from infection. Prior to replanting into infected fields, potted plants can be drenched with phosphate products.

PHYTOTOXICITY ON BLUEBERRY FRUIT

Phytotoxicity on Blueberry Fruit

- Oils and/or EC (emulsifiable concentrate) formulations of pesticides can damage plants when applied improperly
 - Such as in hot weather or in (improper) tank mixes

PHYTOTOXICITY ON BLUEBERRY FRUIT

Phytotoxicity on Blueberry Fruit

• Solo and tank mixes of captan are crucial for fungicide resistance management, however, DON'T apply captan in combo with or in close proximity to oil sprays. Likewise, captan and EC fungicide combos are NOT recommended.

Blueberry fruit damage observed in 2020 following application of Captan, Sniper, and Malathion 57 EC

Applying captan with oils or EC formulations can allow for captan to penetrate into the plant and cause damage

Outline

- 2020 Disease Diagnostic Summary
- Specific Blueberry Issues During 2020
 - Yeast Rot Problems on Rabbiteye
 - First Identification of Bacterial Wilt of Blueberry in Georgia
 - Phytotoxicity on Blueberry Fruit Spray Injuries
- Management Updates
 - Ripe Rot of Blueberry (Fungicide Resistant Anthracnose)
 Mummy Berry
- Seasonal Spray Schedule

Anthracnose Fruit Rot (Ripe Rot)

- Anthracnose fruit rot is caused by two different fungi: *Colletotrichum gloeosporioides* and *C. acutatum*
- Fruit infections begin at bloom, remain latent until ripening.
 - Can be major issue postharvest
- Warm, wet weather during bloom and just before harvest favors disease development.

Shriveling Ripe berries

Sporulation on infected berry

Orange spore masses on berries

Fungicide Resistance

- Ripe rot fungi (*Colletotrichum sp.*) are known to develop fungicide resistance.
- Anthracnose resistance to QoI fungicides (Abound and Pristine) has been documented previously in Florida, and in 2019 three isolates of *C. gloeosporioides* highly resistant to Pristine were isolated from blueberries near Blackshear, GA.
- These isolates possessed a mutation known to confer resistance in *Colletotrichum sp.* to all QoI fungicides.
- Survey work was is anticipated in 2020 2021 to determine if this resistance is widespread within the Georgia blueberry production region.

ANTHRACNOSE FRUIT ROT

Managing Fungicide Resistant Ripe Rot

 For ripe rot management, fungicides should be applied during bloom and cover sprays

Recommendations below are based on the 2020 SE Regional Blueberry Integrated Management Guide

Trade Name		Active Ingredient	FRAC MoA	РНІ	Efficacy
Qol	Quilt Xcel	azoxystrobin+propiconazole	11+3	30 days	+++++
	Abound	azoxystrobin	11	0 days	+++++
	Pristine	pyraclostrobin+boscalid	11+7	0 days	+++++
Switch		cyprodinil+fludioxonil	9+12	0 days	+++++
Omega		fluazinam	29	30 days	+++
Captan		captan	M4	0 days	+++
Ziram		ziram I		*do not apply later than 3 weeks after full bloom*	++

ANTHRACNOSE FRUIT ROT

Managing Fungicide Resistant Ripe Rot

• For ripe rot management, fungicides should be applied during bloom and cover sprays

Recommendations below are based on the 2020 SE Regional Blueberry Integrated Management Guide

Trade Name	Active Ingredient	FRAC MoA	РНІ	Efficacy
Switch	cyprodinil+fludioxonil	9+12	0 days	+++++
Omega	fluazinam	29	30 days	+++
Captan	captan	M4	0 days	+++
Ziram	ziram	M3	*do not apply later than 3 weeks after full bloom*	++

- Rotate/alternate available modes of action.
 - Note extended Omega PHI and Ziram precautions.
- Tank mix with a "low risk" fungicide such as Captan.

Managing Fungicide Resistant Ripe Rot

During 2020, two field trials were conducted to evaluate

spray programs and new materials for fruit rot control

	Treatment/Timings ^z						Fruit rots (%) ^y			
	30% Petal 10 days after 3 weeks after					Ripe	<u>Rot (%)</u> ×	All Rots (%) ^w		
Program	Bloom	Fall	Petal Fall	Petal Fall	Pre-harvest	'Star'	'Farthing'	'Star'	'Farthing'	
Control	n/a	n/a	n/a	n/a	n/a	2.0 a	7.1 a	17.3 a	15.7 a	
1	Switch	Captan	Switch	Captan	Switch	0.4 b	1.9 b	11.7 ab	7.0 b	
2	Switch	Captan	Miravis Prime	Captan	Miravis Prime	0.1 b	3.3 b	4.1 b	8.1 b	
3	Switch	Captan	Luna Tranquility	Captan	Luna Tranquility	1.1 ab	6.7 a	11.2 ab	15.6 a	
4	Switch	Ziram	Switch	Omega	Switch	0.1 b	1.4 b	13.4 ab	4.8 b	
5	Switch	Ziram	Miravis Prime	Omega	Luna Tranquility	0.3 b	1.7 b	6.9 ab	5.7 b	

zTreatments were applied at (1) 30% bloom (5 Feb), (2) petal fall (19 Feb), (3) 10 days after petal fall (6 Mar), (4) ~3 weeks after petal fall (17 Mar), and (5) pre-harvest (25 Mar). vRecorded for ~150-200 fruit per plot.

xRot caused by *Colletotrichum sp.* ID'd based upon visual observations. Means in each column followed by the same letter are not significantly different according to the least significant difference test (LSD)(α =0.05). "Rots caused by Colletotrichum sp., Phomopsis vaccinii, Alternaria tenuissima, and other unidentified fungi. Means in each column followed by the same letter are not significantly different according to the least significant difference test (LSD)(α =0.05).

Green = Significantly less disease vs. control Yellow = Not significantly different vs. control

Switch, Captan, Omega, & Ziram are effective vs. ripe rot; Miravis Prime provides control that is comparable to Switch

MUMMY BERRY

Mummy Berry

- Disease caused by the fungus *Monilinia vaccinii-corymbosi*
- Symptoms include shoot blight, flower cluster blight, and fruit mummification

Shoot blight

Infected immature fruit

Ripe fruit (mummies)

- On GA rabbiteye, fruit mummification can cause significant yield losses
- SHB often escape due to earlier bud break and bloom

Management

- Cultural controls include sanitation practices such as burying (>1") mummies to reduce initial inoculum
 - This alone is not sufficient for control
- Chemical controls are very effective.
 - Fungicide applications from green tip through bloom
 - Pristine and DMI fungicides (Indar, Tilt, Bumper, Propimax, Quash, Quilt Xcel, or Proline) are recommended
 - Captan should be tank mixed with DMI fungicides to prevent issues with ripe rot

DMI fungicides (Indar, Proline, Propulse, Tilt) as well as Luna Tranquility were very effective in 2020 mummy berry trials

Treatments/Timing ^z				Blighted shoot	ts per bush ^y	<u>Mummy incidence (%)</u> ×	
Green tip	20% Bloom	Full Bloom	Late Bloom	'Powderblue'	'Tifblue'	'Powderblue'	'Tifblue'
	Untreate	ed Control		33.6 a	30.8 a	23.2 a	36.8 a
Proline	Luna Tranquility	Proline	Luna Tranquility	4.6 b	6.4 c	1.1 b	4.9 b
Propulse	Luna Tranquility	Propulse	Luna Tranquility	6.4 b	5.2 c	3.9 b	9.6 b
Indar	Fontelis	Indar	Fontelis	9.8 b	14.4 b	3.5 b	12.0 b
Indar	Indar	Fontelis	Fontelis	10.4 b	n.t.	6.1 b	n.t.
Indar	Indar	Indar	Indar	9.0 b	15.2 b	1.0 b	7.4 b

Mummy incidence (%)^y

Treatments	Application timing ^z	'Ochlockonee'				
Untreated control	n/a	14.9 a				
Tilt	Green tip, 20% Bloom, Full Bloom (x2), Late Bloom, Green Fruit	1.3 b				
Luna Tranquility	Green tip, 20% Bloom, Full Bloom (x2), Late Bloom, Green Fruit	0.0 b				
Propulse	Green tip, 20% Bloom, Full Bloom (x2), Late Bloom, Green Fruit	0.0 b				
Miravis	Green tip, 20% Bloom, Full Bloom (x2), Late Bloom, Green Fruit	0.0 b				
Cannonball 50WG	Green tip, 20% Bloom, Full Bloom (x2), Late Bloom, Green Fruit	0.4 b				
Miravis Prime	Green tip, 20% Bloom, Full Bloom (x2), Late Bloom, Green Fruit	0.5 b				
Green = Significantly less disease vs. control Vellow = Not significantly different vs. contro						

Outline

- 2020 Disease Diagnostic Summary
- Specific Blueberry Issues During 2020
 - Yeast Rot Problems on Rabbiteye
 - First Identification of Bacterial Wilt of Blueberry in Georgia
 - Phytotoxicity on Blueberry Fruit Spray Injuries
- Management Updates
 - Ripe Rot of Blueberry (Fungicide Resistant Anthracnose)
 - Mummy Berry
- Seasonal Spray Schedule

SEASONAL SPRAY SCHEDULE

Example Seasonal Spray Schedule

*assuming Exobasidium, spring epidemics of Rust, and fungicide-resistant Anthracnose

^aDMIs include Indar, Tilt/generics, Quash, and Proline.

^bElevate can be added for additional Botrytis control, if resistance is not an issue.

^cPhosphonate fungicides (ProPhyt, K-Phite, Reliant) are also effective for Phytophthora control

BLUEBERRY IPM GUIDE

Southeast Regional Blueberry Guide

http://www.smallfruits.org/ipm-guides.html

SRSFC Activities - Cr

Crops - Regional Experts

IPM/Production Guides

County Agent Training Weather

IPM/Production Guides

Last updated Monday 21 August 2017 7:59 GMT

Blueberries

Southeast Regional Blueberry Integrated Management Guide Southeast Regional Blueberry Horticulture and Growth Regulator Guide Southeast Regional Organic Blueberry Pest Management Guide

Bunch Grapes

Southeast Regional Bunch Grape Integrated Management Guide

Caneberries

Southeast Regional Caneberries Integrated Management Guide Southeast Regional Caneberry Production Guide (PDF) Southeast Regional Caneberry Production Guide (Online Version)

Muscadines

Southeast Regional Muscadine Grape Integrated Management Guide

Strawberries

Southeast Regional Strawberry Integrated Pest Management Guide Southeast Regional Strawberry Plasticulture Production Guide Fungicide Selection for Botrytis and Anthracnose Fruit Rot Management 2017

2020 Southeast Regional Blueberry Integrated Management Guide

Commodity Editor Hannah Burrack (North Carolina State University)

Section Editors

Pathology: Jonathan Oliver (University of Georgia), Bill Cline (North Carolina State University), Rebecca Melanson (Mississippi State University), Raj Singh (Louisiana State University) Entomology: Hannah Burrack (North Carolina State University), Frank Hale (University of Tennessee), Ash Sial (University of Georgia), Doug Pfeiffer (Virginia Tech University) Weed Science: Mark Czarnota (University of Georgia), Katie Jennings (North Carolina State University) Vertebrate Management: David Lockwood (University of Tennessee) Pesticide Stewardship and Safety: Ash Sial (University of Georgia)

Senior Editors

Phil Brannen (University of Georgia) Bill Cline (North Carolina State University)

Recommendations are based on information from the manufacturer's label and performance data from research and extension field tests.

Because environmental conditions and grower application methods vary widely, suggested use does not imply that performance of the pesticide will always conform to the safety and pest control standards indicated by experimental data.

This publication is intended for use only as a guide. Specific rates and application methods are on the pesticide label, and these are subject to change at any time. Always refer to and read the pesticide label before making any application. The pesticide label supersedes any information contained in this guide, and it is the law.

Department of Plant Pathology

Recommendations below are from the 2020 SE Regional Blueberry Integrated Management Guide

Seasonal 'at a glance' fungicidal spray schedule options for blueberry

Developmental Stage	Late Dormant	Green tip	Bloom (2-3	Petal Fall	10-14 Days after	20-24 Days after	Pre-Harvest ^e	After Harvest
			applications) ^b		Petal Fall	Petal Fall		Foliage Management
Disease Controlled	Exobasidium	Mummy Berry	Mummy Berry and	Alternaria and	Alternaria and	Alternaria and	Alternaria and Ripe	Septoria Leaf Spot
(Fungicides)	(lime sulfur	(Pristine [11+7]	Twig blight	Ripe Rots	Ripe Rots	Ripe Rots	Rots	(Abound [11] or Tilt
	[NC]) ^a	or Indar [3] or	(Pristine [11+7] or	(Abound [11] or	(Abound [11] or	(Abound [11] or	(Abound [11] or	or Bumper or
		Tilt or Bumper or	Indar ^c [3] + Captan	Pristine [11+7] or	Pristine [11+7] or	Pristine [11+7] or	Pristine [11+7] or	PropiMax or Quash
		PropiMax or	[M4] or Tilt or	Switch [9+12] or	Switch [9+12] or	Switch [9+12] or	Switch [9+12] or	[3] or Aliette or
		Quash [3] or	Bumper or PropiMax	Captan [M4] or	Captan [M4] or	Captan [M4] or	Captan [M4])	ProPhyt [P07] or
		Proline [3])	or Quash [3] or Quilt	Omega [29] or	Omega [29] or	Omega [29] or		Bravo [M5] or
			Xcel [11+3] or Proline	Quilt Xcel [11+3])	Quilt Xcel [11+3])	Quilt Xcel [11+3])		Pristine [11+7] or
		Twig blight	[3])					Switch [9+12] or
		(Pristine [11+7]		Septoria Leaf Spot	Septoria Leaf Spot	Septoria Leaf Spot		Indar [3] or Quilt
		or Indar [3])	For serious Botrytis	(Abound [11] or	(Abound [11] or	(Abound [11] or		Xcel [11+3] or
			problems, add	Aliette [33] or	Aliette [P07] or	Aliette [P07] or		Proline [3])
		If Exobasidium	(CaptEvate [17+M4]	Pristine [11+7] or	Pristine [11+7] or	Pristine [11+7] or		
		has been a	or	Switch [9+12] or	Switch [9+12] or	Switch [9+12] or		Anthracnose
		problem, add	Elevate [17] or	Quash [3] or Quilt	Quash [3] or Quilt	Quash [3] or Quilt		(K-Phite or Aliette or
		Captan [M4]	Pristine [11+7] or	Xcel [11+3] or	Xcel [11+3] or	Xcel [11+3] or		ProPhyt [P07] or
			Switch [9+12])	Proline [3]) ^f	Proline [3]) ^f	Proline [3]) ^f		Pristine [11+7] or
								Quilt Xcel [11+3]
			If Alternaria and	If Exobasidium	If Exobasidium	If Exobasidium		or Quash [3])
			Ripe Rot have been a	has been a problem,	has been a problem,	has been a problem,		
			problem, add (Abound	add Captan [M4]	add Captan [M4]	add Captan [M4]		Rust
			[11] or Pristine [11+7]					(Bravo [M5] or Tilt or
			or Switch [9+12] or					Bumper or PropiMax
			Omega [29]) ^d					[3] or Pristine [11+7]
								or Indar or Quash [3]
			If Exobasidium has					or Proline [3]) ^g
			been a problem, add					
			Captan [M4]					

^a Exobasidium is not specifically on the label. However, when applied for other diseases, suppression of Exobasidium has been observed.

^bBloom times vary, due to varietal differences and the environment. Bloom sprays should provide protection against the primary pathogens of blooms for the entire bloom period. The number of applications required for bloom may vary from 1-3, depending on the season and the variety.

^cWhen using Indar during bloom, always tank-mix with Captan. Captan provides additional control of mummy berry, and it has some activity against twig blight, Botrytis and fruit rots. However, it is mainly of value to prevent increased rots with the use of Indar, as well as providing resistance management.

^dMany of the fungicides which are registered for rot control may also have activity against twig dieback organisms, such as *Phomopsis* species.

^eIn wet years, pre-harvest and post-harvest rots may be a potential problem. Under these conditions, 1-2 applications of a pre-harvest material may be necessary for rot control.

fSeptoria leaf spot is generally controlled with 2-4 fungicide applications. This disease is more problematic on highbush blueberry varieties, but some rabbiteye varieties may experience premature defoliation from Septoria as well. For leaf spot, Aliette and other phosphites (ProPhyt, K-Phite, etc.) are best utilized after harvest, since they are not as efficacious against the fruit rots, and they serve as a resistance management tool.

^gRust is problematic on some blueberry varieties, especially in far southern areas such as south Georgia, and it can result in complete, premature defoliation on susceptible varieties. Scout for rust in mid to late July. Applications of fungicides (2-3) from August to mid-September will generally result in good rust management. Some varieties may require yearly rust control.

ΜΥΙΡΜ ΑΡΡ

MyIPM App

MyIPM App

- Contains basic disease (and pest) info for Apple,
 Blackberry, Blueberry,
 Cherry, Cranberry, Grape,
 Peach, Pear, & Strawberry
- Includes management and pesticide efficacy info
- Available for free download

THANK YOU!

Thank you for your attention!